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Heap data structures
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Related material can be found in 
  Richard Bornat has a paper that explains the difficulties nicely
  http://www.eis.mdx.ac.uk/staffpages/r_bornat/papers/MPC2000.pdf

More advanced material can be found in 
  Peter Müllerʼs thesis
  http://people.inf.ethz.ch/lehnerh/pm/publications/getpdf.php?
bibname=Own&id=Mueller01.pdf

  Rustan Leinoʼs thesis
  http://research.microsoft.com/en-us/um/people/leino/papers/Caltech-
CS-TR-95-03.pdf
  
  Cristiano Calcagnoʼs thesis
  http://www.doc.ic.ac.uk/~ccris/ftp/thesis.pdf



Encoding heap and fields

In languages like C a common source of problems is 
pointers in the heap.

C ::= … |  [E] := E |  x := [E] | x := new | …
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We will extend our representation to allow allocation of memory.  We 
will just allow allocation of a two-word block, that is, 
" x := new 
means that 
" [x]
and 
" [x+1]
are allocated after calling it.
We can extend this to blocks of varying sizes in the style of C, but for 
illustrative purposes we will simply present the two location version, as 
this allows the encoding of lists and trees.

Rules

{ P [@heap:= @heap{E ← E’} ] ∧ alloc(E) }  
   [E] := E‘  
{ P }

{ P [x := @heap[E]] ∧ alloc(E) }  
   x := [E]  
{ P }
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The systemʼs initial pre-condition will be 
" ∀x. @heap[x] = @unalloc
We change the elements of @heap to contain the values from the 
integers and a special value @unalloc.  We then define
" alloc(E)   =    @heap[E] ≠ @unalloc 



Rules

{ ∀y. @heap[y] = @unalloc 
          ∧ @heap[y+1] = @unalloc  ∧ y > 0
     ⇒ P [x := y, @heap := @heap{y ← 0, y+1 ← 0}] }

   x := new
{ P }

7

What does this say if there the heap does not have space to allocate a 
new block?
Can we make assumption about where it will allocate a new block?

Example

{ @heap[3] = 4 }
  x := new;
  y := [x]
{ x ≠ 3 ∧ y = 0 }
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{ @heap[3] = 4 }
{ @heap[3] ≠ @unalloc }
{ ∀y. @heap[y] = @unalloc ∧ y = 3 ⇒ false }
{ ∀y.  @heap[y] = @unalloc ∧ @heap[y+1] = @unalloc  ⇒  y ≠ 3 }
{ ∀y.  @heap[y] = @unalloc ∧ @heap[y+1] = @unalloc ∧ y>0 
    ⇒  (y ≠ 3 ∧ @heap{y ← 0}{y+1 ← 0} [y] = 0) }
  x := new;
{ x ≠ 3 ∧ @heap[x] = 0 }
  y := [x]
{ x ≠ 3 ∧ y = 0 }



Exercises

Verify 

{ ∀x. @heap[x] ≠ @unalloc } 
   y := new
{ false }

and

{ @heap[2] = 2 }
y := new

[y] := 3
{ @heap[2] = 2 }
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Representing a list

First attempt:

list(x)  ⇔  x = 0 ∨ ∃y.  @heap[x] = y ∧ list(y)

Admits cycles
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Consider the heap given by 
   @heap[4] = 4
This satisfies the axiom/definition: assuming we take a greatest fixed 
point of the definition.



Representing a list

list(x,vs)  ⇔  

           x = 0 ∧ vs = {}
         ∨ ∃y.  @heap[x] = y ∧ list(y, vs \ {x}) ∧ x ∈ vs
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We can see that
   @heap[4] = 4 
does not satisfy this definition.  
Assume 
   @heap[4] = 4 ⇒ list(4,vs)
By definition these means
   @heap[4] = 4 ⇒ list(4, vs \ {4})

Unrolling the definition again, we get
   @heap[4] = 4 ⇒ 4 ∈ vs \ {4}
But 4 ∈ vs \ {4} is false, so it cannot be a list. 

List creation

let create_list () =
    local x,y;
    x := new;
    if nondet() then 
       y := create_list ();
       [x] := y; 
    return x
in …
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This function creates a list of a random but non-empty length.   nondet() 
randomly returns either true or false.



List creation specification

First attempt

{ true } create_list () { ∃vs. list(return, vs) ∧ vs≠{} }
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Specification does not say what is unmodified, that is we cannot prove
" { @heap[4] = 3 }
"   x := create_list ()
" { @heap[4] = 3 ∧ ∃vs. list(x,vs) }
with this specification.

List creation specification

Second attempt

{ oldheap = @heap } 
   create_list () 
{ ∃vs. list(return, vs) ∧ vs≠{}
   ∧ ∀i ∉ vs. @heap[i] = oldheap[i] }

14

Is this disjoint from previously allocated memory?  Could vs be already 
allocated memory locations?  

We still cannot prove
" { @heap[4] = 3 }
"   x := create_list ()
" { @heap[4] = 3 ∧ ∃vs. list(x,vs) }
as we donʼt know that vs and 4 are disjoint.



List creation specification

{ oldheap = @heap } 
   create_list () 
{ ∃vs. list(return, vs) ∧ vs≠{}
   ∧ ∀i ∉ vs. @heap[i] = oldheap[i]
   ∧ ∀i ∈ vs. oldheap[i] = @unalloc }
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Now, we can verify the example
{ @heap[4] = 3 }
{ ∃oldheap.  oldheap = @heap ∧ oldheap[4] = 3 }
  { oldheap = @heap ∧ oldheap[4] = 3 }
    { oldheap = @heap }
  x := create_list ()
    { ∃vs.  list(x,vs) ∧ ∀i ∉ vs. @heap[i] = oldheap[i] ∧ ∀i ∈ vs. oldheap[i] = @unalloc }
  { ∃vs.  list(x,vs) ∧ ∀i ∉ vs. @heap[i] = oldheap[i] ∧ ∀i ∈ vs. oldheap[i] = @unalloc   
∧  oldheap[4] = 3}
{∃oldheap. ∃vs.  list(x,vs) ∧ ∀i ∉ vs. @heap[i] = oldheap[i] ∧ ∀i ∈ vs. oldheap[i] = 
@unalloc   ∧  oldheap[4] = 3}
{ @heap[4] = 3 ∧ ∃vs. list(x,vs) }
The interesting step is the final one.  At this point we can see that 
   ∀i ∈ vs. oldheap[i] = @unalloc   ∧  oldheap[4] = 3
     ⇒ 4 ∉ vs
And hence by  ∀i ∉ vs. @heap[i] = oldheap[i]  and oldheap[4] = 3
we can see that @heap[4] = 3

Exercise

Prove

{ initheap }

x := create_list ();

y := create_list ();

{ x ≠ y }
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If we removed the “∧ vs≠{} “ from the specification, demonstrate where 
the proof would fail.



Exercise: verify the body

{ oldheap = @heap } 
local x,y;
x := new;
if nondet() then 
   y := create_list ();
   [x] := y;
return x
{ ∃vs. list(return, vs) 
   ∧ ∀i ∉ vs. @heap[i] = oldheap[i]
   ∧ ∀i ∈ vs. oldheap[i] = @unalloc }
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Framing

What stays the same is becoming the majority of the 
proof!
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Solutions

The difficulty here is we have to state the obvious.

Solutions, we will now explore

• Enforce a programming discipline  
-   JML/Spec#/ESCJava

• Make logic more expressive
-   Separation logic
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I have a personal bias towards the second, because that is my 
research area.  Please take this into account when following the 
presentation, and draw your own conclusions.

Spec#/JML
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I will provide separate notes for this lecture as it will be given from pre-
prepared slides.

I would recommend reading the following paper:
   http://research.microsoft.com/en-us/um/people/leino/papers/
krml189.pdf



Separation logic
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I would recommend reading John Reynoldsʼs notes on separation logic 
to accompany this part of the course.
   http://www.cs.cmu.edu/~jcr/copenhagen08.pdf

A new approach

Recall our original specification for creating a list:

{ true } create_list () { ∃vs. list(return, vs) }
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Idea pre-condition describes what the code requires to execute, and 
post-condition says what it will provide on return.   Importantly it wonʼt 
describe the whole memory of the system, just the bit of interest.  
Everything not described will be unchanged.  The pre-condition must 
state all the memory we will use.
So, we might like to write 
   { empty }  create_list()  { list(return) }
that is, we require no memory to execute, and we return the memory 
for a list starting at return.
The next two lectures will develop all of the theory to make the intuitive 
specification formally correct.
The key feature is we are dealing with a logic of partial states.  
Assertion will not describe the whole state, just part of it.



Programming language

C ::= … | [E] := E | x := [E] | x := new | dispose E | …
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Now, we will even add the ability to deallocate memory.  

Exercise, extend the earlier encoding to deal with deallocation.

A new logic

P ::= B | P ∧ P | P ∨ P | ¬P | P ⇒ P | ∃x. P | ∀x. P 

     |  E  E’  |  empty  |  P * P  | P -* P
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We take classical logic and add two primitive assertions and two 
connectives.
We have two basic assertions for describing the memory:
" E  Eʻ" " “E points to Eʼ ”"
       This means the heap contains a single element
" empty" " " " "
       This means the heap is empty
The two new connectives mean
" P * Q" " Separating conjunction (or star)""
       This means the heap can be split into two disjoint pieces, such that 
one satisfies P and the other Q. 
" P -* Q" " Separating implication (or wand)" "
       This one means for all extension of the heap that satisfy P, the 
extended heap satisfies Q.
The separating implication is hard to understand.



Semantics of assertions

Assertions are interpreted over partial heaps

h : Loc → Val + unalloc

s :  Var → Val

where Loc is the positive non-zero integers
  and   Val is all the integers
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We define a composition operation on heaps

   h = h1 ⨄ h2      ⇔    
     ∀ i.  h1(i) defined ⇒ h(i) = h1(i)  and h2(i) undefined 
     ∧  ∀ i.  h2(i) defined ⇒ h(i) = h2(i)  and h1(i) undefined 
     ∧  ∀ i.  h1(i) undefined ∧ h2(i) undefined ⇒ h(i) undefined 

This combines heaps that are disjoint. Do not have the same location 
allocated.

Semantics of assertions

We say a stack, s, and heap, h, satisfy an assertion iff

s,h ⊧ empty     ⇔     h = {}

s,h ⊧ E  E’     ⇔     h = { ⟦ E ⟧s  ⟦ E’ ⟧s }

s,h ⊧ P1 * P2      
   ⇔ ∃h1,h2. h = h1 ⨄ h2 ∧ s,h1 ⊧ P1 ∧ s,h2 ⊧ P2
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Intuitively, we can relate these to our earlier assertion language as 
" empty    "=" ∀x.  @heap[x] = @unalloc
" E  Eʻ" " =" @heap[E] = Eʻ   ∧   ∀x.  x ≠ E ⇒ @heap[x] = 
@unalloc
and could view the separating conjunction as 
" P * Q" " =" ∃heap1,heap2.  P[@heap := heap1]  ∧ Q
[@heap := heap2] ∧ union(heap1,heap2) = @heap ∧ disjoint
(heap1,heap2)
where
" disjoint(heap1,heap2) = ∄x. heap1[x] ≠ @unalloc ∧ heap2[x] ≠ 
@unalloc
" heap2[i] = unalloc    ⇒    union(heap1,heap2)[i] =  heap1[i]
" heap2[i] ≠ unalloc    ⇒    union(heap1,heap2)[i] =  heap2[i]

[Thanks to Tony Hoare for suggesting this intuitive presentation]



Magic wand

s,h ⊧ P1 -* P2 
   ⇔ ∀h1,h2. h2 = h1 ⨄ h ∧ s,h1 ⊧ P1 ⇒ s,h2 ⊧ P2
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This is useful for giving weakest pre-condition rules and axioms for 
separation logic. 
Can be useful for loop invariants.

Example implications

The following implications all hold:

P * empty ⇔ P

P1 * (P2 * P3) ⇔ (P1 * P2) * P3

P1 * P2  !⇔  P2 * P1

P1 * (P2 ∨ P3)  ⇔  (P1 * P2)  ∨  (P1 * P3)

P1 * (P2 ∧ P3)  ⇒  (P1 * P2)  ∧  (P1 * P3)
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Exercise prove these implications.  
For example, 
The first requires we prove
  ∀s,h.  s,h ⊧ (P * empty) ⇔ P 
Pick arbitrary s and h.  We must prove
   s,h ⊧ P * empty      iff    s,h ⊧ P
Left to right direction:
Assume s,h ⊧ P * empty
Therefore, there exists h1 and h2, such that s,h1 ⊧ P and s,h2 ⊧ empty and h1* h2 = h
By (s,h2 ⊧ empty) we know h2 must be the empty heap, {}.
By (h1* {} = h), we know h1 = h.  
Hence s,h ⊧ P as required.
Right to left direction:
Assume s,h ⊧ P
Prove s,h ⊧ P * empty. 
This require we find h1 and h2 such that s,h1 ⊧ P and s,h2 ⊧ empty and h1* h2 = h.
Pick h1 as h, and h2 as {}.  Rest follows trivially.



Example implications

In classical logic we have

P ∧ ¬ P   ⇒  false        P ⇒ P ∧ P         P ∧ Q  ⇒  P

Do we have the same with *?

• P * ¬ P    ⇒ false

• P ⇒ P * P

• P * Q ⇒ P
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Give concrete interpretations for P and Q for each implication and 
exhibit a heap such that this does not hold.

Example implications

Do the following implications hold?

x  5 * y  6   ⇒  x ≠ y

x  5 * y  5   ⇒  x ≠ y

x  5 ∧ y  5  ⇒ x = y

x  5 ∧ y  6  ⇒  false

x  5 * x  4   ⇒ false
30



The Invariance rule 
is dead!

Γ ⊦ { P } C { Q }            .
Γ ⊦ { P ∧ R } C { Q ∧ R }

Provided free variables of R are not in mod(C).
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Recall earlier we had an invariance rule.  Now given this interpretation 
of the logic it is no longer valid.  
Consider 
  { x  4 ∧ x  4 }
     { x  4 }
     x := 5;
     { x  4 }
  { x  5 ∧ x  4 } 
We do not modify any variables in this so using the invariance rule it is 
perfectly valid to preserve x  4.  The problem comes from the implicit 
heap variable.  In some sense,  we have modified the @heap variable.  
If we treat this as modified then we could not preserve any facts about 
the heap that werenʼt specified.  

Tight interpretation

Semantics of judgements

{ P } C { Q }

means 

If  s,h ⊧ P then  

• C,s,h  safe
• C,s,h →* skip,s’,h‘   ⇒   s’,h’ ⊧ Q

Doesn’t access memory outside h.

32

To deal with this we rewrite our operational semantics to deal with the heap access being 
unalloc.

  x := [E], s, h   →    fault" " provided h( ⟦ E ⟧s ) = @unalloc
  [E] := Eʼ, s, h   →    fault" " provided h( ⟦ E ⟧s ) = @unalloc
  dispose E, s, h   →  fault"   " provided h( ⟦ E ⟧s ) = @unalloc  or  h( ⟦ E+1 ⟧s ) = @unalloc

We also give reductions for successful computations
  x := [E], s, h   →    skip, s[x:=v], h" " " provided h( ⟦ E ⟧s ) = v
  [E] := Eʼ, s, h   →   skip, s, h[v := ⟦Eʼ⟧s ]"" provided h( ⟦ E ⟧s ) = v
  dispose E, s, h   →  skip, s, h[⟦E⟧ := @unalloc, ⟦E+1⟧ := @unalloc]"  "
" " " " " " " provided h( ⟦ E ⟧s ) ≠ @unalloc  and  h( ⟦ E+1 ⟧s ) ≠ @unalloc
  x := new, s, h → skip, s[x:=v], h[v:=0, v+1:=0]
" " " " " " " provided  {h(v), h(v+1)} = {@unalloc} " "  

Given this semantics we can define safe as simply not faulting
  C,s,h safe   ⇔  ¬(  C,s,h →* fault )



Long live the 
Frame rule!

Γ ⊦ { P } C { Q }           .
Γ ⊦ { P * R } C { Q * R }

Provided free variables of R are not in mod(C).
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Due to the semantics of assertions, we know anything not described in 
the pre-condition will be unchanged by the command:  pre-conditions 
describe all the state that the program will access. This leads to the 
most important rule of separation logic, the frame rule. 
We still use standard Hoare logic reasoning for variables, but for the 
heap we use the new connective * to decide what will remain 
unchanged in the heap. 

[Note there is work on using * to reason about variables: see Bornat, 
Calcagno, Yang: Variables as Resource in Separation Logic; and 
Parkinson, Bornat, Calcagno: Variable as Resource in Hoare Logic. 
These works remove the side-condition on the variables at the expense 
of complicating the logic to have assertions about “variable ownership”.] 

Heap read

We can present the heap read rule it two ways,
Backwards:

{ ∃Y.  P[x:=Y] ∧ (E  Y * true) }  x := [E]  { P }

Small axiom:

{ E  Y ∧ E = Z } x := [E] { x = Y ∧ Z  Y }
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The first formulation takes an arbitrary post-condition and gives you 
what the pre-condition must have been.  Most of the rules give so far 
have been in this form.  
However,  in separation logic it is possible to give rules in a different 
form, small axioms.  A small axiom says just what the command uses.  
In the first, the P can describe any amount of heap, where as with the 
second, we just describe the “footprint” of the command.  
The small axiom for heap read is one of the least elegant rules as it has 
to deal with expression and variable manipulation.  The rest are much 
nicer.



Aside: small axiom for 
assignment

In standard Hoare logic we can give a “small” axiom for 
assignment. Consider the standard axiom

(1)" { P [x := E] } x := E { P }

If we tried to write this in the small axiom style it 
would be

(2)" { Y = E }  x := E { x = Y } 

where Y is a logical variable. 
35

We can see this is trivially derived from (1), the converse is also 
possible
{ P [x := E] } 
{ ∃ Y.  Y=E ∧ P [x := Y] }
   { Y=E ∧ P [x := Y] }
      { Y=E }
         x := E
      { Y=x }
   { Y=x ∧ P [x := Y] }
{ ∃Y. Y=x ∧ P [x := Y] }
{ P } 
Note that, P [x := Y] cannot mention x hence it is valid to preserve it 
with the invariance rule.  
We can also derive the small axiom from the standard. Exercise, 
perform this derivation.

Rules for commands

{ E  _ } [E] := E’ { E  E’ }

{ empty } x := new  { x  0 * x+1  0 }

{ x  _  *  x+1  _  } dispose x { empty }

36



Example verification

{empty}
x := new; 
[x] := x+1;
[x+1] := x;
while x != 0 do
    x := [x]
{false}
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Here we have a similar verification to we saw earlier.  Let us proceed to 
do it using separation logic
The initialisation phase can be verified as
{ empty }
  x := new
{ x  0 * x+1  0 }
   { x  0 }
  [x] := x+1
   { x  x+1 }
{ x  x+1 * x+1  0 }
   { x+1  0 }
   [x+1] := x 
   { x+1  x }
{ x  x+1 * x+1  x}
{ ∃y. x  y * y  x }

Example verification

{empty}
x := new; 
[x] := x+1;
[x+1] := x;
while x != 0 do
    x := [x]
{false}
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Then we get to the loop, we will assume the loop invariant is 
" ∃y. x  y * y  x 

{ ∃y. x  y * y  x ∧  x!=0}
{ ∃z. ∃y. x  y * y  z ∧ z=x }
  {  x  y * y  z ∧ z=x }
    {  x  y ∧ z=x }
    x := [x]
    {  z  y ∧ y=x }
  {  z  y ∧ y=x * y  z }
{ ∃z. ∃y. z  y * y  z ∧ y=x }
{ ∃z.  z  x * x  z }



Exercises

Verify

{ empty }
x := new; 
y := new;
while y ≠ x do
   dispose y;
   y := new
{ false }
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Verify, or say why it is not possible to prove
  { empty }
  x := new;
  x := new;
  dispose x
  { empty }
and
  { empty }
  x := new;
  dispose x;
  dispose x
  { empty } 

Lists and trees
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In this lecture, we will represent recursive data structures with recursively defined predicates in separation 
logic.



List

We use the following axiom

list(x)  ⇔  ∃y,v.  x  y,v * (y=0 ∨ list(y))

Does this allow cycles?
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This predicate does not describe what the data contained in the list it, just that it is the shape of a list. 

We use 
  x  y0,…,yn  as a shorthand for x  y0 * … * x  yn

In the early examples for encoding the heap we had difficulties representing a list.  Firstly,  we had to know it was acyclic.  Can this list be cyclic?

First, we can prove 
  list(y) ⇒ y ≠ 0
Prove
  list(y) ∧ y=0 ⇒ false
By definition LHS is equivalent to
  (∃x,v. y  x,v * (…) ) ∧ y=0
As y  _ implies y ≠ 0, this is unsatisfiable, therefore our initial implication holds.

Now, consider a one element cyclic list
  ∃v.  x  x,v
Does this satisfy the list(x) predicate? That is,
  ∃v.  x  x,v   ⇒  list(x)
Let us assume it does and derive a contradiction.  By the definition of list we know
  (∃v.  x  x,v)   ⇒   ∃y,v.  x  y,v * (y=0 ∨ list(y)) 
If this holds, then it must also be the case that
  empty ∧ x≠0   ⇒    x=0 ∨ list(x)
but this cannot hold as empty does not imply list(x). So the original assumption that a one element cyclic list satisfies list(x) must be wrong.

If we look at the models that satisfy list(x) we can see they are all acyclic.

Create List

{ empty } create_list()  { list(return) } 
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This is basically the specification that we gave early.  However, in 
separation logic this has the right meaning.  Calling it twice leads to two 
distinct lists.

Prove 
  { empty } 
      x := create_list() 
      y := create_list()
  { x ≠ y * true } 

Note that we are using non-empty lists, earlier we specified the set of 
locations was non-empty.



Reverse list

reverse(x) {

  n := [x];
  [x] := 0;
  while n ≠ 0 do
     p := x;
     x := n;
     n := [x]; 
     [x] := p;

}
43

{ list(x) }
  n := [x];
{ x  n,_ * (n=0 ∨ list(n)) }
  [x] := 0;
{ x  0,_ * (n=0 ∨ list(n)) }
{ list(x) * (n=0 ∨ list(n)) }
  while n ≠ 0 do 
     { list(x) * list(n) }
        p := x;
        x := n;
     { list(p) * list(x) }
"  n := [x];
      { list(p) * x  n,_ * (n=0 ∨ list(n)) }
        [x] := p;
      { list(p) * x  p,_ * (n=0 ∨ list(n)) }
      { list(x) * (n=0 ∨ list(n)) }
{ list(x) * (n=0 ∨ list(n)) ∧ n=0 }
{ list(x) }

Append List

append(x,y) {
  local n in
  n := x; 
  while n ≠ 0 do
     p := n;
     n := [p];
  [p] := y;
}
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This procedure takes two lists and appends the second onto the end of 
the first.  

  { list(x) * list(y) }
  append(x,y)
  { list(x) }

The problem with trying to verify this is, what is the loop invariant?

We always have list(x) and list(y).

We could define the loop invariant as
   (list(x) ∧ (true * list(n))) * list(y) 
but it is difficult in separation logic to work with the standard conjunction 
∧ on datastructures.  [This is a topic of current research]

It would be really useful to be able to describe just a segment of a list. 



List segments

listseg(x,z) ⇔ x=z ∨ (x≠z * ∃y,v. x  y,v * listseg(y,z))
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We can express the loop invariant to the previous program as

The loop invariant is 
   listseg(x,n) * list(n)  
   ∨  listseg(x,p) * p 0,_ * n=0

Exercise: Prove or find a counter-example to the following
" list(x)  ⇔  listseg(x,0)
       listseg(x,y) * list(y) ⇔ list(x)
       listseg(x,y) * listseg(y,z) ⇔ listseg(x,z)
Exercise: Perform the verification on the previous slide.  

Tree

We can define a tree predicate as

tree(x)  ⇔  x=0  ∨  ∃i,j.  x  i,j * tree(i) * tree(j)
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Exercise:  Can this admit graphs?  Either show how, or give details why 
not.



Dispose tree

{ tree(x) }disposetree(x) { emp } ⊦
  { tree(x) }
    i := [x];
    j := [x+1];
    disposetree(i);
    disposetree(j);
    dispose x
  { empty }
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We can verify this recursive procedure for disposing of a tree.  Is 
it possible to double dispose a locations?

Could we implement this concurrently, where each branch is 
disposed in parallel with the other?

Parallel Dispose tree

{ tree(x) }disposetree(x) { emp } ⊦
  { tree(x) }
    i := [x+1];
    j := [x];
    disposetree(i) || disposetree(j) ||  dispose x
  { empty }
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Here   C1 || C2 means perform C1 and C2 at the same time.


